#
Image Image







HUMANIZED ROBOT




Image



AriRobo Description:


Image

AriRobo

A Humanized Robot

Starting Date: 1st may 2003




Field Of Study

Robotics is the branch of technology that deals with the design, construction, operation, and application of robots, as well as computer systems for their control, sensory feedback, and information processing.


Explore: Robot

Robotics is the application of mechatronics and automation to create robots, which are often used in manufacturing to perform tasks that are dangerous, unpleasant, or repetitive.


Actuation

Actuators are like the "muscles" of a robot, the parts which convert stored energy into movement. By far the most popular actuators are electric motors that spin a wheel or gear, and linear actuators that control industrial robots in factories. But there are some recent advances in alternative types of actuators, powered by electricity, chemicals, or compressed air.


Electric motors

The majority of robots use electric motors, often brushed and brushless DC motors in portable robots, or AC motors in industrial robots and CNC machines. These motors are often preferred in systems with lighter loads, and where the predominant form of motion is rotational.


Linear actuators

Various types of linear actuators move in and out instead of rotating, and often have quicker direction changes, particularly when very large forces are needed such as with industrial robotics. They are typically powered by compressed air (pneumatic actuator) or an oil (hydraulic actuator).


Series elastic actuators

A spring can be designed as part of the motor actuator, to allow improved force control. It has been used in various robots, particularly walking humanoid robots.


Electroactive polymers

EAPs or EPAMs are a new plastic material that can contract substantially (up to 380% activation strain) from electricity, and have been used in facial muscles and arms of humanoid robots, and to allow new robots to float, fly, swim or walk.


Piezo motors

Recent alternatives to DC motors are piezo motors or ultrasonic motors. These work on a fundamentally different principle, whereby tiny piezoceramic elements, vibrating many thousands of times per second, cause linear or rotary motion. There are different mechanisms of operation; one type uses the vibration of the piezo elements to walk the motor in a circle or a straight line. Another type uses the piezo elements to cause a nut to vibrate and drive a screw. The advantages of these motors are nanometer resolution, speed, and available force for their size. These motors are already available commercially, and being used on some robots.


Elastic nanotubes

Elastic nanotubes are a promising artificial muscle technology in early-stage experimental development. The absence of defects in carbon nanotubes enables these filaments to deform elastically by several percent, with energy storage levels of perhaps 10 J/cm3 for metal nanotubes. Human biceps could be replaced with an 8 mm diameter wire of this material. Such compact "muscle" might allow future robots to outrun and outjump humans.


Sensing

Sensors allow robots to receive information about a certain measurement of the environment, or internal components. This is essential for robots to perform their tasks, and act upon any changes in the environment to calculate the appropriate response. They are used for various forms of measurements, to give the robots warnings about safety or malfunctions, and to provide real time information of the task it is performing.


Manipulation

Robots need to manipulate objects; pick up, modify,or otherwise have an effect.Thus the "hands" of a robot are often referred to as end effectors, while the "arm" is referred to as a manipulator. Most robot arms have replaceable effectors, each allowing them to perform some small range of tasks. Some have a fixed manipulator which cannot be replaced, while a few have one very general purpose manipulator, for example a humanoid hand.

For the definitive guide to all forms of robot end-effectors, their design, and usage consult the book "Robot Grippers"


Rolling robots

For simplicity most mobile robots have four wheels or a number of continuous tracks. Some researchers have tried to create more complex wheeled robots with only one or two wheels. These can have certain advantages such as greater efficiency and reduced parts, as well as allowing a robot to navigate in confined places that a four wheeled robot would not be able to.